A Two-Stage Joint Model for Domain-Specific Entity Detection and Linking Leveraging an Unlabeled Corpus
نویسندگان
چکیده
The intensive construction of domain-specific knowledge bases (DSKB) has posed an urgent demand for researches about domain-specific entity detection and linking (DSEDL). Joint models are usually adopted in DSEDL tasks, but data imbalance and high computational complexity exist in these models. Besides, traditional feature representation methods are insufficient for domain-specific tasks, due to problems such as lack of labeled data, link sparseness in DSKBs, and so on. In this paper, a two-stage joint (TSJ) model is proposed to solve the data imbalance problem by discriminatively processing entity mentions with different degrees of ambiguity. In addition, three novel methods are put forward to generate effective features by incorporating an unlabeled corpus. One crucial feature involving entity detection is the mention type, extracted by a long short-term memory (LSTM) model trained on automatically annotated data. The other two types of features mainly involve entity linking, including the inner-document topical coherence, which is measured based on entity co-occurring relationships in the corpus, and the cross-document entity coherence evaluated using similar documents. An overall 74.26% F1 value is obtained on a dataset of real-world movie comments, demonstrating the effectiveness of the proposed approach and indicating its potentiality to be used in real-world domain-specific applications.
منابع مشابه
Domain Adaptation with Latent Semantic Association for Named Entity Recognition
Domain adaptation is an important problem in named entity recognition (NER). NER classifiers usually lose accuracy in the domain transfer due to the different data distribution between the source and the target domains. The major reason for performance degrading is that each entity type often has lots of domainspecific term representations in the different domains. The existing approaches usual...
متن کاملEntity Linking Leveraging Automatically Generated Annotation
Entity linking refers entity mentions in a document to their representations in a knowledge base (KB). In this paper, we propose to use additional information sources from Wikipedia to find more name variations for entity linking task. In addition, as manually creating a training corpus for entity linking is laborintensive and costly, we present a novel method to automatically generate a large ...
متن کاملJoint Bilingual Sentiment Classification with Unlabeled Parallel Corpora
Most previous work on multilingual sentiment analysis has focused on methods to adapt sentiment resources from resource-rich languages to resource-poor languages. We present a novel approach for joint bilingual sentiment classification at the sentence level that augments available labeled data in each language with unlabeled parallel data. We rely on the intuition that the sentiment labels for ...
متن کاملC3EL: A Joint Model for Cross-Document Co-Reference Resolution and Entity Linking
Cross-document co-reference resolution (CCR) computes equivalence classes over textual mentions denoting the same entity in a document corpus. Named-entity linking (NEL) disambiguates mentions onto entities present in a knowledge base (KB) or maps them to null if not present in the KB. Traditionally, CCR and NEL have been addressed separately. However, such approaches miss out on the mutual syn...
متن کاملEstimating the Parameters for Linking Unstandardized References with the Matrix Comparator
This paper discusses recent research on methods for estimating configuration parameters for the Matrix Comparator used for linking unstandardized or heterogeneously standardized references. The matrix comparator computes the aggregate similarity between the tokens (words) in a pair of references. The two most critical parameters for the matrix comparator for obtaining the best linking results a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Information
دوره 8 شماره
صفحات -
تاریخ انتشار 2017